Learning Objectives

• Attendants should understand:
 – Indications and contraindication for liver transplant
 – Organ allocation under the MELD system
 – The role of living donor transplantation
 – Complications of liver transplant
 – Immunosuppression related complications and drug-drug interactions
Disclosure

I have no financial disclosures to report
Prognosis of Compensated Cirrhosis

- Median survival = 9–12 years
- Majority of deaths: Non-liver related
 - Cardiovascular, strokes, etc
 - Liver-related deaths: HCC
- Predictors of decompensation
 - HVPG: HR 1.11
 - MELD score: HR 1.15
 - Serum albumin: HR 0.37
Prognosis of Decompensated Cirrhosis

• Median survival = 2 years
• Causes of deaths:
 – Portal HTN
 – Liver failure
 – Sepsis
 – HCC
• Predictors of death
 – Childs-Turcotte-Pugh score
 – MELD score
 – Serum sodium
Liver Transplant: Indications

- Irreversible acute/fulminant liver failure
- Chronic liver failure
- Metabolic disorders
 - e.g., primary hyperoxaluria, familial amyloidosis
- Hepatobiliary malignancy
 - Hepatocellular carcinoma
 - Cholangiocarcinoma
Liver Transplantation: Timing

• MELD score > 14
• Complications of cirrhosis
 – Ascites/SBP
 – Variceal bleeding
 – Encephalopathy
 – HRS
• Development of hepatobiliary malignancy
• MELD exception cases:
 – Hepatopulmonary syndrome, hepatic hydrothorax, inherited metabolic syndromes
Transplant: Contraindications

- Severe comorbid medical illnesses
 - CAD/CHF
 - Moderate to severe pulmonary HTN
- Extrahepatic malignancies/Advanced HCC
- Uncontrolled systemic infections (except biliary)
- Psychiatric and psychosocial contraindications:
 - Active substance abuse or high recidivism risk
 - Poorly controlled psychiatric illness and/or noncompliance
 - Poor social support
- Technical contraindications:
 - Extensive thrombosis of portal and mesenteric vessels
 - Obesity, BMI > 35
Organ Allocation

• 1997, UNOS criteria for listing
 – Child-Turcotte-Pugh score ≥ 7
• 2002, UNOS adopted the model for end stage liver disease (MELD)
• MELD predicts mortality in patients with chronic liver disease:
 \[\text{MELD} = 3.78 \log_e (\text{bilirubin}) + 11.2 \log_e (\text{INR}) + 9.57 \log_e (\text{creatinine}) + 6.4 \]
MELD score and estimated 3-month mortality

<table>
<thead>
<tr>
<th>Score</th>
<th>3 month mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>15%</td>
</tr>
<tr>
<td>29</td>
<td>30%</td>
</tr>
<tr>
<td>33</td>
<td>50%</td>
</tr>
<tr>
<td>38</td>
<td>80%</td>
</tr>
</tbody>
</table>
Organ Shortage: Supply vs Demand

UNOS July 2001

Waiting List Registrants
Donors

A MEMBER OF TRINITY HEALTH
LOYOLA MEDICINE
We also treat the human spirit.
Living Donor Liver Transplant (LDLT)

• Living donor liver transplantation (LDLT) has been developed to help overcome the organ donor shortage

• Living donor transplant is based on two main principles:
 – (1) donor morbidity and mortality must be kept to a minimum
 – (2) graft and recipient survival should be as high as in full size cadaveric liver transplant
Essential Concepts of Living Donors

- No conflict of interest
- No coercion
- Minimize donor risks
- Donors must be given every opportunity to change their minds
- Emphasize alternatives
- Living liver donation should be reserved for situations where the benefit to recipient outweighs the risk to the donor
Living Donors Liver Transplant

- Liver = 2% body weight
- Optimal: > 1% liver weight/body weight ratio
- 70 kg recipient needs at least 700 cc (gm)
- Cannot go below 0.7 - 0.8%
Disadvantages of Living Donor

- There is a small risk to the healthy donor and the period of discomfort and recovery for the donor
- Increased rates of biliary complications among recipients and donors
 - 15-30% risk to recipient
- Ethical considerations
Organ Shortage and LDLT: The Reality

The number of patients awaiting a liver transplant at year-end peaked in 2001; this is clearly related to the introduction of the MELD/PELD allocation system in 2002. The number who received a deceased donor liver transplant has gradually increased, reaching a peak in 2006. The gap between the numbers of candidates and recipients has been slowly shrinking since 2002.

Complications of LT

- Rejection
 - Acute
 - Chronic
- Infections
- Biliary complications
 - Strictures
 - Bile leaks
- Vascular Complications
 - Hepatic Artery Thrombosis
 - PV thrombosis/stenosis
 - Hepatic Vein stenosis
Long Term Complications After LT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>NODM 15%</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Increased risk in cholestatic liver dz, long term steroids</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>CNI</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>CNI</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>Sirolimus, CSA</td>
</tr>
<tr>
<td>Neurological</td>
<td>Headache- CNI, neuropathy, confusion</td>
</tr>
<tr>
<td>Hematological</td>
<td>Anemia, neutropenia</td>
</tr>
<tr>
<td>Viruses</td>
<td>CMV, EBV, Herpes viruses</td>
</tr>
<tr>
<td>Malignancy</td>
<td>Skin, hematologic, all solid tumors, PTLD</td>
</tr>
</tbody>
</table>
Acute cellular Rejection

- Occurs in 40-50% of recipients within 1st year post transplant
- Most occur within the first month
- Signs and symptoms
 - Elevated AST/ALT/Alk phos
 - Low grade fever
 - Peripheral eosinophilia
 - Rarely, abdominal pain
- Treatment:
 - IV steroids
 - Adjustment of immunosuppression
Infections Post-Liver Transplant

Month 1 (Nosocomial infection)
- Bacteria and Candida are common
- Line infections, wound infections, UTI, pneumonia
- 19-28% of patients develop bacteremia: Staph, Enterococcus (50-60%)
- C. diff

Month 2-6 (Opportunistic organisms)
- *Pneumocystis*
- Viruses: CMV, EBV, HHV 3 & 6, VZV
- Fungi: *Aspergillus, Cryptococcus, Histoplasma, and Coccidioides*
- Bacteria: *Nocardia, Listeria, Mycobacterium tuberculosis*

Month 6 - ∞
- Influenza, UTI, community-acquired pneumonias
- Herpes zoster
- CMV
Highest risk are recipients from CMV mismatch or Recipients of OKT-3/Thymoglobulin
Without prophylaxis, risk of symptomatic disease 64%
Fever, leukopenia, hepatitis in up to 25%
Pneumonitis, GI infection
Predisposes: chronic rejection, worse HCV recurrence and fungal superinfection
Prophylaxis: Valganciclovir, ganciclovir, acyclovir for 6 months after LT
Treat with IV Ganciclovir/oral Valganciclovir for 3 months
Biliary Anastomotic Strictures

• Incidence
 – 5-15% of cadaveric transplants
 – 15-30% of living donor transplants

• Treatment:
 – Endoscopic:
 • ERCP with stent placement
 • Successful in 75% of cases
 – Surgery:
 • Revision
 • Hepaticojejunostomy
Disease Recurrence Post-LT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>30% cirrhotic at 5 years</td>
</tr>
<tr>
<td>HBV</td>
<td>100% without prophylaxis</td>
</tr>
<tr>
<td>AIH/PBC/PSC</td>
<td>20% (graft loss is rare)</td>
</tr>
<tr>
<td>NASH</td>
<td>Up to 80%</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>Common, ?Mayo protocol</td>
</tr>
<tr>
<td>HCC</td>
<td>Depends on tumor size</td>
</tr>
</tbody>
</table>
Advances in Immunosuppression

• Pre-cyclosporine era: 1 year survival 23% to 35%

• Calcineurin inhibitor era:
 – Cyclosprine and tacrolimus
 – 1 year survival 85% to 90%
Cyclosporine (CyA)

- Causes selective suppression of cell-mediated immunity via inhibition of T-cell activation
- Forms a complex with cytoplasmic cyclophilin
 - Binds and inhibits the calcium & calmodulin-dependent phosphatase calcineurin
 - Inhibits IL-2, IL-3, IL-4, IL-8, and various chemotactic factors
- Absorption is dependent on bile flow
- Metabolized primarily by cytochrome P450-3A pathway
- Drug-drug interactions are common
Cyclosporine Toxicity

• Nephrotoxicity: main side effects
 – Post-OLT rate of renal failure up to 20%
• Metabolic abnormalities:
 – Hyperkalemia, hypomagnesemia, hyperlipidemia, hyperglycemia
• Hypertension
• Gingival hyperplasia and hirsutism
• Neurological manifestations: 10% to 28%
 – Tremor, peripheral neuropathy, psychoses, hallucinations, motor weakness, and seizures
Tacrolimus (AKA; TAC, FK506)

- TAC is 100 times more potent than CyA
- Acts by binding to FK binding protein (FKBP12)
 - Complex then inhibits calcineurin
- Absorption occurs in the duodenum and jejunum
 - Unlike CyA, is not dependant on bile flow
 - Food reduces bioavailability (take on an empty stomach)
- Metabolism by cytochrome P450
Tacrolimus Toxicity

• Similar to CyA:
 – Nephrotoxicity
 – Neurotoxicity: tremor, headache
 – Metabolic: hyperkalemia, hypomagnesemia, DM, HTN
 – Nausea, vomiting, diarrhea

• CyA vs. TAC:
 – TAC has a higher rate of diabetes
 – CyA predisposes to more hypertension, dyslipidemia, hirsutism, and gum hyperplasia
Drug Interactions with Calcineurin Inhibitors

Table 1A. Drugs That May Increase Tacrolimus and Cyclosporine Blood Concentrations

<table>
<thead>
<tr>
<th>Calcium Channel Blockers</th>
<th>Antifungal Agents</th>
<th>Macrolide Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diltiazem</td>
<td>Fluconazole</td>
<td>Clarithromycin</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>Itraconazole</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Ketoconazole</td>
<td>Troleandomycin</td>
</tr>
<tr>
<td>Verapamil</td>
<td>Voriconazole</td>
<td>Azithromycin</td>
</tr>
<tr>
<td></td>
<td>Clotrimazole</td>
<td>Telithromycin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prokinetic Agents</th>
<th>Miscellaneous Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisapride</td>
<td>Amiodarone</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>Cimetidine</td>
</tr>
<tr>
<td></td>
<td>Methylprednisolone</td>
</tr>
<tr>
<td></td>
<td>Omeprazole</td>
</tr>
<tr>
<td></td>
<td>Protease inhibitors</td>
</tr>
<tr>
<td></td>
<td>Nefazodone</td>
</tr>
<tr>
<td></td>
<td>Ethinyl estradiol</td>
</tr>
</tbody>
</table>

Table 1B. Drugs That May Decrease Tacrolimus and Cyclosporine Blood Concentrations

<table>
<thead>
<tr>
<th>Anticonvulsants</th>
<th>Antibiotics</th>
<th>Herbal Preparations</th>
<th>Miscellaneous Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>Rifabutin</td>
<td>St. John’s Wort</td>
<td>Probucol</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Rifampin</td>
<td></td>
<td>Terbinafine</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Rifapentine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosphenytoin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Corticosteroids

• Block T-cell and antigen-presenting cell-derived cytokine expression
• Corticosteroids are still used in reversing acute rejection and in maintenance therapy
• Side effects: HTN, MS changes, HL, impaired wound healing, DM, ulcers, myopathy, osteoporosis, fluid retention, cataracts
• Most programs wean corticosteroids off within the first year except in cases of autoimmune hepatitis
Antimetabolites

• Azathioprine:
 – Antagonizes purine metabolism
 – Used at < 5% of center due to it’s side effect profile (myelosuppression and hepatotoxicity)

• Mycophenolate (MMF, CellCept) and mycophenolic acid (MPA, Myfortic):
 – Inhibit the de novo purine nucleotide synthesis
 – Causes blockage of DNA replication in T and B cells that lack salvage pathways
 – Adverse effects (nausea, abdominal pain, diarrhea, anemia and neutropenia) occur in 24% to 57%
Rapamycin (Sirolimus, RAP)

• RAP is an antibiotic (structurally related to TAC)
 – Has immunosuppressive, antitumor, and antifungal properties
• Low nephrotoxicity
• Toxicity has limited its use (30% discontinuation rate):
 – Leukopenia, thrombocytopenia, dyslipidemia, anemia, lymphocele, wound dehiscence, oral ulcerations, interstitial pneumonitis
• **Black box warning!!!** = increased risk of hepatic artery thrombosis
Current Therapeutic Strategies

- Steroid Avoidance
- Renal Sparing Protocols
- Conversion from CNI to Sirolimus
- Calcineurin Inhibitor Avoidance
- Individualization of Drug Therapy
Safe Medications Post-OLT

• HTN:
 – Amlodipine, clonidine, ACE inhibitors, ARBs, beta-blockers (excluding carvedilol)
• Diabetes:
 – Metformin, sulfonylureas and thiazolidinediones
• Antibiotics:
 – PCNs, cephalosporins, quinolones, sulfonamides and topical (not oral) anti-fungal
• Seizure:
 – Gabapentin, pregabalin, and levetiracetam
• Hyperlipidemia:
 – Statins, ezetimibe, niacin, bile acids binders
• Pain:
 – Narcotics, Tylenol, tramadol (no NSAIDS!)
Risks of Immunosuppression

• > 50% of deaths post-OLT are related to complications of immunosuppression:
 – Cardiovascular disease
 – Renal failure
 – Infection
 – Metabolic diseases
 – Malignancy
Renal Dysfunction

• Chronic renal failure (GFR of ≤ 29) occurs in 20% after 5 years post-OLT
 – Is associated with a 4.5 x greater probability of death compared to recipients with normal renal function

• Risk factors:
 – Pre-OLT factors:
 • Female sex
 • CKD pre-OLT
 • DM
 • HCV
 – Post-OLT:
 • Immunosuppression (CNIs)
 • HTN
 • DM
Metabolic Disorders

- **Diabetes:** prevalence may be as high as 33%
 - Risk factors include = corticosteroids, TAC, HCV, race, obesity
 - Incidence of de novo post-OLT diabetes
 - Greatest during the first year (26%)

- **Hypertension:**
 - Corticosteroids and CNIs increase the risk
 - CNIs: induce sympathetic stimulation, renal vasoconstriction and sodium retention
 - CyA vs. TAC = 25–82% vs. 17–64%,
 - Calcium channel blockers are effective
 - Beta-blockers are less effective
 - ACE inhibitors and ARBs can be used with caution (CKD & hyperkalemia)
Metabolic Disorders

- **Dyslipidemia:** occurs in 16 to 43%
 - Risk factors: female gender, cholestatic liver disease, pre-OLT HL, DM, obesity, and use CyA, steroids, and sirolimus
 - TAC has a minor effects, MMF and AZA have no significant effect

- **Medical treatment:**
 - Bile acid sequestrants: decrease MMF and MPA levels by 35
 - Fibric acids (gemfibrozil, fenofibrate and clofibrate) can cause myopathy
 - Hydrophilic statins (pravastatin or fluvestatin): not metabolized by the same cytochrome P450-3A as CNIs and sirolimus
 - Lipophilic statins (atorvastatin, lovastatin and simvastatin) are metabolized by cytochrome P450-3A
 - Associated with higher rates of myopathy at dosages > 20mg/day
 - Combined with fibric acid can significantly increase the risk of myopathy
Metabolic Disorders

- **Obesity:** up to 28% of transplant recipients have a BMI > 30
- 22% of nonobese transplant recipients became obese within 2 years
- Risk factors for weight gain:
 - Pre-OLT obesity
 - Use of corticosteroids
 - CsA vs. TAC (46% vs. 27%)
- Treatment:
 - Diet and exercise
 - Considering altering immunosuppressive medications
 - Orlistat may decrease CyA absorption, but not TAC
Metabolic Bone Disease (MBD)

• Risk Factors (general):
 – Pre-OLT MBD
 – ETOH and cholestatic liver diseases
 – Advanced age, physical inactivity
 – Smoking
• Risk factors (transplant related):
 – Corticosteroid use
 – CyA > TAC
• Skeletal fractures prevalence = 13% after 2 years
• Treatment:
 – Lifestyle modification: avoid ETOH, smoking, physical inactivity
 – Pharmacologic: calcium, vitamin D, and bisphosphonates
Cutaneous Malignancies

- Squamous cell carcinomas, basal cell carcinomas and melanomas are frequently observed in transplanted recipients.
- Skin cancers post-OLT (especially SCC):
 - Develop at a younger age
 - Are more aggressive
 - Metastasize
 - Tend to be multiple
- Peak incidence = 3 to 5 years post-OLT
- Risk factors for SCC:
 - History of skin cancer and/or actinic keratosis
 - Fair skin
 - Chronic sun exposure and/or sunburn
 - Older age
 - Duration and intensity of immunosuppression (CD4 lymphopenia)
 - History of HPV infection
Preventative Medicine

- Routine health maintenance
- Vaccinations
- Dental care
- Metabolic syndrome screening:
 - HTN, DM, HL
- Bone density screening (DEXA every 1-2 years)
- Lifestyle screening:
 - Physical activity, drinking, smoking, diet
- Skin cancer screening
THE END